SYI
(_ u ()
AN

CLO API/ SDK Guide

SDK Version
Applicable CLO S/W Version: CLO 5.0.202 Official Patch, 22t May 2019
API/SDK v2.2 (New Architecture)

Document Version
Version 5 (2019/05/22)

2D 1 2

A
Table of Contents
T INEFOTUCTION oottt bbbt b b 3
2. INSTAIIATION oottt ettt eSSttt 3
3. CLO SDK PACKAGE ..ottt e es st s8Rt 4
Al QUUICK STttt ettt e R b 7
5. MaKe YOUI OWN PlUG Nttt ss it sss s sss st st ss st ss st et 9
5. PlUG TN MANAGET ...ttt ettt e as e8RS RR £ bbb 10
7. Library Window IMPIemeENntationeeeeesecessseessss s sssessssssss st ssssessssssssssssssssssessssnessssnnes 12
8. PlUG-iN MENU POSIION ..ottt sss bbbt st sttt ss bbbttt 16
9. PlUG-iN DEBUG LOGS ...t sissiiss s s sssssss sttt st sttt sss bbbt st ss st esssnes 17

SYI
(_ u ()
AN

1. Introduction
This document describes how to download, install and use CLO API/SDK and
how developers can implement their own plug-ins running on CLO. It also
includes the simple structure for API/SDK package and addresses for the
sample projects in the package.
As CLO S/W has been developed for cross-platforms: Windows and Mac OS,
you can use the API/SDK package to make plug-in .dll and/or .dylib for both
platforms.

They have commonalities but some parts are different. Will describe the
common parts and different parts respectively.

2. Installation
1) System Environment
a. Windows

- OS: Windows 8, Windows 10
- IDE: Visual Studio 2017 (or above)

b. Mac OS

- 0OS: mac OSX 10.12 (or above)
- IDE: Xcode 9.2 (or above)

2) Download SDK

Please download the SDK zip file from the online manual.

% Compatibility with Previous Versions

You must use each version’s corresponding API/SDK to create CLO

Plug-in.
CLO Ver. Windows API Mac API Manual
5.0 Official V1.1 (download) V0.5 (download) download
Release
5.0.156 Official | V1.2 (download) V0.6 (download) download
Patch

5.0.178 Official
Patch

V2.0 (download)

5.0.202 Official
Patch (Current)

V2.2 (web)

https://support.clo3d.com/hc/en-us/articles/360017616633?flash_digest=36d1dd5e923f53f4e80c61fdf48d2a92f0ddf31d
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_Windows_v1_1_for_5_0_100_Official.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_MacOS_v0_5_for_5_0_100_Official.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO%20API_SDK_GUIDE_VER1_20190214.pdf
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_Windows_v1_2_for_5_0_156_Official_Patch.zip
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_MacOS_v0_6_for_5_0_156_Official_Patch.zip
https://support.clo3d.com/hc/en-us/article_attachments/360029023034/CLO_API_SDK_GUIDE_VER3_20190320.pdf
https://clo3d.oss-cn-shanghai.aliyuncs.com/web/api/5_0/CLO_SDK_v2_0_for_5_0_178_or_later.zip
https://support.clo3d.com/hc/en-us/articles/360017616633?flash_digest=36d1dd5e923f53f4e80c61fdf48d2a92f0ddf31d

A |
(¢ (C))
2 NS N

3. CLO SDK Package

CLO SDK package includes API interface header/lib files and sample
projects.

1) Folder structure

- API/SDK Package

-

Package

—{ CLOAPIInteface ‘

— include

"y

— Lib

~{ Samples ‘

— ExportPlugin ‘

“— LibraryWindowlmplementation

- ExternLib Package

.
[ExternLib
oy

e

SYI
(_ u ()
AN

2) API/SDK Package

a.

CLOAPIInterface folder
<api_sdk_package>

i) CLOAPIInterface.h
This file includes all the header files for interface classes located in
the ‘include’ folder. You can include this file to use API calls inside
the interface classes. The usage is described in the Samples ->
ExportPlugin.

i) LibraryWindowlInterface.h
This file includes an interface class so that the plug-in developers
can override to implement the Library Window construction. You
can find the sample code for the usage via API -> Samples ->
LibraryApilmplementation

include

i) APIMessages.h (Windows Only)
Simple protocol messages to communicate between JavaScript on
WebAPI browser and CLO S/W. You can find the example JS
code inside the header file.

i) CloApiData.h
This file includes some structures/classes for API calls.

i) DefineDIlIForWin.h
This file contains a ‘define’ for export/import dll.

iv) ExportAPlInterface.h, ImportAPlInterface.h
You can include this header file to import/export files such as ZPrj,
ZPac, OBJ, Rendering images, and so on. You can find the
example in “ExportPlugin” sample.

V) FabricAPlInterface.h
You can include this header file to import metadata to add fabric
and/or export zfab file.

Vi) RestAPlInterface.h

SYI
(_ u ()
AN

This includes high-level wrapping functions of REST APIs. If these
are not enough for your own use, you may use your own REST
API functions.

vii) UtilityAPlInteface.h

This file includes some utility functions like “Get temporary folder
path of CLO” and “Show a message box on CLO”.

viii) WebAPIInteface.h (Windows Only)

We decided to remove the Web API because CLO S/W does not
offer Webkit related functionality anymore.

iii. Lib

This folder has library files for function table in the CLOAPIInterface
project: CLOAPIInterface.lib for Windows or libCLOAPIInterface_.dylib for
Mac OS. You should import this library file into your plug-in project to run
in CLO API functions inside CLO S/W.

iv. Samples

i. ExportPlugin
A sample project to show how to use Export APIs and create a
plug-in. For example, you can see how to save files such as
thumbnail and Tech Pack and send them to your server using
REST APIs with this project file.

ii. LibraryWindowlmplementation
A sample project to show how to implement the custom Library
Window to build up the Finder API tab. You can find the usage
from 7. Library Window Implementation

3) ExternLib Package
a. Qt (Windows Only)

This folder contains Qt library — some header files and lib/dll files for
LibraryWindowlmplementation sample project. You can compile and run
the sample project as-is without any modification after downloading the
ExternLibPackage.zip file from the CLO web site and extract the file into
the api_sdk_package/ folder along with the CLOAPIInterface folder.

] 2
(L W)
NN

4. Quick Start

1) Download and install “CLO 5.0” into your PC via the CLO Official Site
(https://www.clo3d.com).

2) Open the sample project — ExportPlugin project

a. Windows

Build “ExportPlugin.dll” file

Open the solution file (ExportPlugin.sin) via Visual Studio 2017 (or
above).

Run “Build Solution” in Visual Studio (press Ctrl+Shit+B for
shortcut). Make sure that “Solution Configurations” is “Release” and
“Solution Platforms” is “x64” when building the solution.

The DLL file will be created in “Samples\ExportPlugin\x64\Release”
folder.

Put “ExportPlugin.dll” into the default plug-in folder.

Copy the plug-in dll file and paste/overwrite into the assets folder;
located in C:\Users\Public\Documents\CLO\Assets_ver_(version
number)\Preferences\API_Plug_in\

You can use the ‘cloapi_plugins’ folder as you used in the beta
version of API/SDK packages. Create ‘cloapi_plugins’ into the CLO
Executable folder you installed in i) and use it as the default plug-in
folder.

b. Mac OS

Build “libExportBOM.dylib” file

Open the xcode project file (ExportPlugin.xcodeproj) via Xcode.

@ CLO_SDK_G...12_11.docx ExportPlugin > = ExportBOM.xcodeproj
Header > LibraryApilmplementation » ExportPlugin.sin
Lib > Source
Samples >

ExportBOM.xcodepro

https://www.clo3d.com/

] 2
(L W)
NN

- Run “Archive” via Product menu in XCode.

@ Xcode File Edit View Find Navigate Editor Debug Source Contro
[NON) > i ExportBOM) Il My Mac

B = QA A © = o B B ider) h
Analyze {+8B

v @1 ExportBOM

v Header GES
Build For
¥ [Source Perform Action
o+ ExportPlugin.cpp
v Products il
T&R libExportBOM.dylib Clean

Stop

Scheme
Destination

Create Bot...

- You'd be able to find the output dylib via Window -> Organizer.

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control m Help

e°e > i ExportBOM) Ell My Mac Minimize %
Zoom

B QAN & =p B8 g < & ExportBOM Header) I

v & ExportBOM revious Tab

v Header
B ExportPlugin.n D yand API 0%
¥ [Source \ Welcome to Xcode %
o ExportPlugin.cpp De'wcs
¥ [Products g e - Organizer

SaT libExportBOM.dylib Show Touch Bar

Bring All to Front

™ & ExportBOM — h ExportPlugin.h

ii. Put “libExportBOM.dylib” into the default plug-in folder.

- Copy the plug-in dll file and paste/overwrite into the assets folder;
located in Users\(user name)\Documents\CLO\Assets_ver_(version
number)\Preferences\API_Plug_in\

3) Run CLO and browse the new feature from plug-in menu.

Seftings Help

Language 3

User Settings - |

Plug-in » Export Garment Information

Log Out

SYI
(_ u ()
AN

5. Make your Own Plug-in

To make your own plug-in, you need to customize the following functions.
You can find these functions inside ‘ExportPlugin’ project.

1) DoFunction
This function is called when a user clicks the action menu in the CLO S/W
plug-in menu. In this function you can implement codes like sending exported
files to your server.

2) GetActionName
You can change the action menu title which appears under the plug-in menu.

3) CallbackFromWebKit(int argc, char** argv)

Deprecated this call because CLO and CLO API does not provide web
related functionality anymore.

4) GetObjectNameTreeToAddAction

This function is called when the user adds a plug-in dli(or dylib) file into the
CLO S/W. You can manage the position where you want to put the plug-in
menu above or below which menu/action in the application. See “8. Plug-in
menu position” for details.

5) GetPositionindexToAddAction
This function is also used when the user imports a plug-in dll(or dylib); you
can choose whether the plug-in action would be put into below the designated

menu/action which you wrote in 4) or above the target.

Then, build DLL(or dylib) and paste it to the installation folder as guided in “4. Quick
Start”.

2™ 2
(ORN®)
2 N N

6. Plug-In Manager

1) You can set the position to add a plug-in action into the desirable menu in the
User Settings via User Settings -> Plug-in Tab.

User Settings

2) If you click the B add icon, ‘File Open’ dialog will be shown to input the
plug-in dll path for Windows, the dylib path for Mac OS and then ‘Register
Plug-in’ dialog will appear; you can edit the feature title and menu position to
insert the plug-in feature.

B rlug-in Manager ? *

Name E:.q:-:-rt ::U:-t':l'l'l
Sosition Plug-In

Export Custam

10

2™ 2
(ORN®)
2 N N

3) New item will be added into the Preference Plug-In tab like below. You can
edit / delete the items.

User Settings

| Plug-in

Feabre

11

SYI
(_ u ()
AN

7. Library Window Implementation

Library Window Interface are different from other API applications. When the
user clicks ‘API tab’ in the Finder in CLO, the application starts to call the
virtual functions in the Library Window API interface class. If you implemented
a class inherited from the Library Window API interface class, build it, and put
the dll into CLO’s executable folder as designated way; the module will run
the implemented function inside the plug-in dll.

1) Windows

a. Open the sample project

Browse <api_sdk_package> - ‘CLOAPIlInterface’ -> ‘Samples’ ->
‘LibraryWindowlmplementation‘ and open the solution file:
“LibraryWindowlmplementation.sin”.

b. Write Code

You can write code as you want in LibrarylmplePlugin class functions in .cpp
file but do not add or modify anything inside .h file.

c. Build the project

Build a solution/project then the output dll file will be created in
LibraryWindowlmplementation -> x64 ->Release folder named
CloLibraryAPI1_Plugin.dll. Copy the output dll file into the CLO executable
folder. ‘APl tab’ in Finder will act as you described in your code following the
Library Window Interface/Implementation specification.

Please see the LibraryWindowlnterfacel.h and LibraryWindowimplmentation
Plugin project code for details.

2) Mac OS

e This will break apple codesigns.
e Assuming that the ID of the user logged in to mac is clo

a. How to install Qt SDK

i. Download Qt mac sdk.
mac Qt Library url : https://s3.amazonaws.com/clo.share/Ot.zip

ii. Extract the downloaded Qt.zip file to “/” (root)

iii. Register QTDIR in .bash_profile.

12

https://s3.amazonaws.com/clo.share/Qt.zip

TS
L (L)
NN

2
K

open ~/.bash_profile
export QTDIR=/Users/clo/Qt/4.8.7

export PATH=$QTDIR/bin:$PATH
source ~/.bash_profile

b. How to implement Library Window Implementation
I Extract the CLO_SDK.zip file.

CloApi >
' CloLibraryAPI_Plugin.pro
Q CloLibraryAPI_Plugin.xcodeproj

mac_release

scripts

il. In the terminal, enter the following command to create
CloLibraryAPI Plugin.xcodeproj.

python scripts/build_library_interface.py xdebug

iii. Open the generated xcodeproj file in Xcode.

S WbCloLibr...yAP!_Plugin) B My Mac CloLibraryAP| Plugin: Ready | Today at 5:11 PM 1 = @ < 0O D0
B)RR) e LibraryaPImplPlugin.cpp) [Li <a> 0 e
Identity and Type
namespace CLOAPT
{ Name LibraryAPlImpIPlugin.cpp
¥ B CloApi LibraryAPIImplPlugin: :LibraryAP1ImplPlugin() Type Default - C++ Source B
¥ [samples 1
¥ 9 LibraryApiimplementation) <]
o LibraryAPIimpiplugincpp M
LibraryAPIImplPlugin: : ~LibraryAP1InplPlugin() -
{ Full es/SSD512/

ICLO_5.0/

ples/
mplementation/
ibraryAPlmpIPlugin.cpp ©

bool LibraryAPTInp1Plugin::EnableCustomUI()
{
s R On Bamand Resaurce Tags
}
it Target Membership
1 Text Settings

: ding No Explicit Encoding
itn(/1)

ith(Line Endings | No Explicit Line Endings
folderPath = folderPath.left(folderPath.lengtn() - 1);

(ol oo

Indent Using Tabs
ame = folderPath.section('/’, -1};

ntPath = folderPath.left(folderPath.size() - (filename.size() + 1)); D@ .
tPath;

G Cocoa Touch Class - A Cocoa
8 Touch ciass

String GetOnlyrileName(

e
(T b

(1) Unit Test Case Class - A class
implementing a uni test

2 Edit the LibraryWindowlmplPlugin.cpp file.
Always modify the next return value in the function to true.
The API tab is activated in the library window only if the return value of
this function is true.

bool LibraryWindowImplPlugin::EnableCustomUI()
{

13

A\
4

R\
A\IR/4

(1
(1
\

return true;

V. The currently implemented code is a sample code.

Vi. Implement functions declared in LibraryWindowlInterface.h to suit your
requirements.

Vii. Release build.

python scripts/build_library_interface.py release

viii. ~ The built dylib file will be created in the following location:

mac_release/CloLibraryAPI_Plugin/libCloLibraryAPI_Plugin.1.0.0.dy
lib

TS rivCloLibraryAPI_Plugin.1.0.0.dylib

Makefile » libCloLibraryAP|_Plugin.1.0.dylib
»_ libCloLibraryAP|_Plugin.1.dylib
» libCloLibraryAPI_Plugin.dylib

% moc >
¥ object >
aze » [l Documents » i CLO_SDK v0.8 for 5_0_OBT » [l mac_release » [l CloLibraryAPI_Plugin » [build

iX. Overwrite the generated libCloLibraryAP1_Plugin.1.0.0.dylib file into
the CLO package installed in /Applications:

/Applications/CLO_Network_OnlineAuth_Beta.app/Contents/Frame
works/libCloLibraryAPI_Plugin.1.0.0.dylib

> Breakpad.framework >
4 files.sign
> libavcodec.56.26.100.dylib
libavformat.56.25.101.dylib
> libavutil.54.20.100.dylib

libcgauth.dylib

@ libCloLibraryAPI_Plugin.1.0.0.dylib
> libCloMathSimulate.dylib
libCloScene.1.0.0.dylib
liberypto.1.0.0.dylib
libcryptopp.dylib

libcurl.4.dylib

libfbxsdk.dylib

libfreeimage.3.16.0.dylib libCloLibraryAPI_Plugin.
libfreetype.6.dylib 1.0.0. dy|ib
libftgl.2.1.3.dylib ’ 1~ KB
libgec_s.1.dylib Created Yesterday
libGLEW.2.1.0.dylib Modified Yesterday
libgomp.1.dylib Last opened Yesterday
libnvrte-builtins.dylib Add Tags...
libnvrtc.dylib

libomp.dylib

libopencv_core.2.4.11.dylib
libooencv hiahaui.2.4.11.dvlib
& Macintosh HD > [Applications > CLO_Network_OnIineAuth_Beta.app > Contents > Frameworks > libCloLibraryAPI_Plugin.1.0.0.dylib

14

] 2
(L W)
NN

X. Now run CLO_Network_OnlineAuth.app.
Closet and API tabs will be created and shown on the left side of
Favorites in the Library window.

Library
Local Closet API

Favorites
Garment
Avatar
Hair
Shoes
Pose
Motion
Hanger

Fabric

Ll cdiseman mead Tolomn

EX

New_Fe...avt Male_B...avt

Male_A...avt Kid_A_...avt Female_...avt Female_...avt

Xi. Click the API tab to navigate to the code you've implemented.

15

8.

1)

2)

SYI
(_ u ()
AN

Plug-in Menu Position
“cloapi_plugins” folder

When CLO S/W starts to run, the plug-in module loads the dll(or dylib) files in
the ‘cloapi_plugins’ folder automatically.

In case GetObjectNameTreeToAddAction() function is implemented and the
default position for the plug-in menu is described inside the function properly,
an action will be added to above or below the menu/action position for the
plug-in action.

If GetObjectNameTreeToAddAction() is not implemented or contains
improper description, an action will be added to the child of Settings / plug-in
menu.

Edit

The user can modify the target position for the plug-in menu when or after
adding the plug-in via the Plug-in manager. See “6. Plug-in manager”.

Add plug-in via Plug-in manager

If the plug-in dli(or dylib) has the proper GetObjectNameTreeToAddAction()
function, the position will appear in the Register Plug-in dialog so that the
user can edit and/or confirm.

Edit the plug-in action position

The user can change the action position via the plug-in manager for the plug-
ins which were loaded automatically from ‘cloapi_plugins’ folder or were
added from plug-in manager by user

Caution

Please keep in mind that the user edits the plug-in position via step 2), it
would discard the default position described in the plug-in dli(or dylib) file. It
means that the priority of the user modification is higher than the plug-in
developers’; and the key value for the decision is the plug-in dli(or dylib) file
path — absolute file path.

As this can make users confused as illustrated below, please be careful.

I A developer wrote the default position inside ‘plug_in.dIl’

il. A user saves the ‘plug_in.dIl' into the ‘cloapi_plugins’ folder or a
desirable folder, adds the plug-in and modifies the position

iii. The developer changes the default position inside ‘plug_in.dII" and
distributes it to the user again.

V. If the user puts the latest ‘plug_in.dIl’ into the same directory he or she
used in ii) and overwrites it, the plug-in menu will be located in the
position the user set in ii).

16

1)

2)

SYI
(_ u ()
AN

Plug-in Debug Logs

Plug-in log will be made in (CLO_ASSET_FOLDER)/api_plugin_log.txt when
trying to run the plug-in action from the file menu.

CLO_ASSET_FOLDER

Windows

C:\Users\Public\Documents\CLO_(model_name)\Assets_ver_ (CLO version number)\
Mac CLO_ASSER_FOLDER

~\Documents\CLO\Assets_ver_ (CLO version numben)\

Debug logs

MESSAGE_PLUGIN_ACTION_MENU_CLICKED: "User clicked to run a plug-in action."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_REGISTERED_DLL_PATH: "Module
starts to look up the registered plug-in file path for the plug-in action.”

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_FIND_REGISTERED_DLL_PATH:
"Succeeded to look up the registered plug-in file path for the plug-in action.”

MESSAGE_PLUGIN_ACTION_FAILURE_TO_FIND_REGISTERED_DLL_PATH: "Failed to
look up the registered plug-in file path for the plug-in action."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_LOADED_PLUG_IN_DLL_FILE:
"Checking if the plug-in file has been loaded or not."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_FIND_LOADED_PLUG_IN_DLL_FILE: "The
plug-in has been loaded in the plug-in manager."

MESSAGE_PLUGIN_ACTION_TRYING_TO_LOAD_PLUG_IN_DLL_FILE: "Trying to load
the plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_LOAD_PLUG_IN_DLL_FILE: "The plug-in
file is loaded into the plug-in manager successfully."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_PLUG_IN_DLL_FILE: "Failed to load
the plug-in file."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_PLUG_IN_DLL_FILE_AND_ABORT:
"Failed to load the plug-in file. Aborted."

MESSAGE_PLUGIN_ACTION_TRYING_TO_FIND_DO_FUNCTION: "Trying to find
DoFunction inside the plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_LOAD_DO_FUNCTION: "Succeeded."

MESSAGE_PLUGIN_ACTION_FAILURE_TO_LOAD_DO_FUNCTION: "Failed."

17

SYI
(_ ()
Q2 N N2

MESSAGE_PLUGIN_ACTION_TRYING_TO_EXECUTE_DO_FUNCTION: "Trying to run the
DoFunction inside the plug-in file."

MESSAGE_PLUGIN_ACTION_SUCCESS_TO_EXECUTE_DO_FUNCTION = "Succeeded."

MESSAGE_PLUGIN_ACTION_EXEPCTION_TO_EXECUTE_DO_FUNCTION =
"Exception.”

18

